Effect of Different Treatments During Synthesis on Physical and Chemical Properties of Bacterial Cellulose/Chitosan Composite Film

Authors

  • Annisa Nabila Izzaty Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, (83125) Indonesia
  • Emmy Yuanita Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, 83125 Indonesia http://orcid.org/0000-0003-1610-7200
  • Sudirman Sudirman Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, (83125) Indonesia
  • Sarkono Sarkono Biology Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, (83125) Indonesia
  • Muhammad Al Faris Physics Laboratory, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, 83125 Indonesia
  • Maria Ulfa Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, (83125) Indonesia http://orcid.org/0000-0002-2092-2550

DOI:

https://doi.org/10.21776/ub.jpacr.2024.013.02.3349

Keywords:

Bacterial cellulose, chitosan, ultrasonication, stirring, chemical properties, pyhsical properties

Abstract

Bacterial cellulose (BC) and chitosan (Chi) are biopolymers that play a vital role in various industrial applications due to their unique properties, such as biodegradability, biocompatibility, flexibility, and excellent physical properties. Combined, these two materials can create composites with exceptional characteristics, which can be tailored for specific applications. This study aimed to evaluate the effect of different ultrasonication and stirring treatments on the synthesis of BC/Chi composites, focusing on their chemical, physical, and mechanical properties. Based on the results of microscopy, SEM-EDS, and FTIR analysis, it was found that ultrasonication treatment provides a more effective dispersion process, resulting in higher physical and mechanical properties than BC/Chi stirring.

References

[1] Strnad, S., ZemljiÄ, L. F. Polymers, 2023.

[2] Ashrafi, A., Jokar, M., Mohammadi Nafchi, A. Int. J. Biol. Macromol., 2018, 108,
444–454.

[3] Li, D., Tian, X., Wang, Z., Guan, Z., Li, X., Qiao, H., Ke, H., Luo, L., Wei, Q. Chemical Engineering Journal, 2020, 383.

[4] Cacicedo, M. L., Pacheco, G., Islan, G. A., Alvarez, V. A., Barud, H. S., Castro, G. R. Int. J. Biol. Macromol., 2020, 147, 1136–1145.

[5] Indriyati, Dara, F., Primadona, I., Srikandace, Y., Karina, M. J. Polym. Res., 2021, 28 (3).

[6] Jabłońska, J., Onyszko, M., Konopacki, M., Augustyniak, A., Rakoczy, R., Mijowska, E., Int. J. Mol. Sci., 2021, 22 (14).

[7] Portela, R., Leal, C. R., Almeida, P. L., Sobral, R. G. Microbial Biotechnology, 2019, pp 586–610.

[8] Sulaeva, I., Henniges, U., Rosenau, T., Potthast, A., Biotechnol. Adv., 2015, 33 (8),
1547–1571.

[9] Khattak, S., Qin, X. T., Huang, L. H., Xie, Y. Y., Jia, S. R., Zhong, C. Int. J. Biol. Macromol., 2021, 189, 483–493.

[10] Pasaribu, K. M., Gea, S., Ilyas, S., Tamrin, T., Radecka, I. Biomolecules, 2020, 10 (11), 1–15.

[11] Chen, X., Cui, J., Xu, X., Sun, B., Zhang, L., Dong, W., Chen, C., Sun, D. Carbohydr. Polym., 2020, 229.

[12] Liu, X., Wang, Y., Cheng, Z., Sheng, J., Yang, R. Carbohydr. Polym., 2019, 214,
311–316.

[13] Zmejkoski, D. Z., Zdravković, N. M., Trišić, D. D., Budimir, M. D., Marković, Z. M., Kozyrovska, N. O., Todorović Marković, B. M. Int. J. Biol. Macromol., 2021, 191,
315–323.

[14] Sandhya, M., Ramasamy, D., Sudhakar, K., Kadirgama, K., Harun, W. S. W. Ultrasonics Sonochemistry. Elsevier B.V. May 1, 2021.

[15] Wardhono, E. Y., Wahyudi, H., Agustina, S., Oudet, F., Pinem, M. P., Clausse, D., Saleh, K., Guénin, E., Nanomaterials, 2018, 8 (10).

[16] Ren, X., Tong, Z., Dai, Y., Ma, G., Lv, Z., Bu, X., Bilal, M., Vakylabad, A. B., Hassanzadeh, A., Separations, 2023, 10 (4).

[17] Yang, Z., Pan, L., Han, J., Li, Z., Wang, J., Li, X., Li, W. J. Eng. (United Kingdom), 2017, 2017.

[18] Ybañez, M. G., Camacho, D. H. RSC Adv 2021, 11 (52), 32873–32883.

[19] Ulfa, M., Noviani, I., Yuanita, E., Dharmayani, N. K. T., Sudirman, Sarkono. Jurnal Penelitian Pendidikan IPA, 2023, 9 (6), 4647–4651.

[20] Ashraf, M. A., Peng, W., Zare, Y., Rhee, K. Y. Nanoscale. Res. Lett., 2018, 13.

[21] Pasaribu, K. M., Ilyas, S., Tamrin, T., Radecka, I., Swingler, S., Gupta, A., Stamboulis, A. G., Gea, S. Int. J. Biol. Macromol. 2023, 230, 123118.

[22] Cattaruzza, M., Fang, Y., Furó, I., Lindbergh, G., Liu, F., Johansson, M., J. Mater. Chem. A Mater., 2023, 11 (13), 7006–7015.

[23] Song, Y., Zhao, G., Zhang, S., Xie, C., Li, X. Polymers (Basel) 2023, 15 (18).

[24] Burkhardt, J. Adv. Mech. Eng., 2019, 11 (7).

[25] Francis, C. F. J., Kyratzis, I. L., Best, A. S. Adv. Mater., Wiley-VCH Verlag May 1, 2020.

[26] Jang, J., Oh, J., Jeong, H., Kang, W., Jo, C. Materials. MDPI AG October 2, 2020, pp 1–37.

[27] Gonzaga, V. de A. M., Poli, A. L., Gabriel, J. S., Tezuka, D. Y., Valdes, T. A., Leitão, A., Rodero, C. F., Bauab, T. M., Chorilli, M., Schmitt, C. C. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108 (4), 1388–1397.

[28] Li, C. P., Weng, M. C., Huang, S. L. Polymers (Basel) 2020, 12 (6), 1326.

[29] Preobrazhenskiy, I. I., Putlyaev, V. I. Mendeleev Communications 2023, 33 (1), 83–85.

[30] Tanks, J. D., Arao, Y., Kubouchi, M. Compos. Struct., 2018, 202, 686–694.

[31] Yakaew, P., Phetchara, T., Kampeerapappun, P., Srikulkit, K. Polymers (Basel) 2022, 14 (21).

[32] Emeka Arikibe, J., Lata, R., Rohindra, D. J. Appl. Biosci., 2021, 162, 16675–16693.

[33] Stanescu, P. O., Radu, I. C., Leu Alexa, R., Hudita, A., Tanasa, E., Ghitman, J., Stoian, O., Tsatsakis, A., Ginghina, O., Zaharia, C., Shtilman, M., Mezhuev, Y., Galateanu, B. Drug. Deliv., 2021, 28 (1), 1932–1950.

[34] Beliu, H. N., Pell, Y. M., Jasron, J. Ut. LONTAR Jurnal Teknik Mesin Undana 2016,
3 (2).

Downloads

Published

2024-08-24